Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.071
Filtrar
1.
Huan Jing Ke Xue ; 45(5): 2558-2570, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629521

RESUMO

Atmospheric polycyclic aromatic hydrocarbons (PAHs) and their derivatives are a global problem that influences the environment and threatens human health. To investigate the characteristics, sources, and health risk assessment of PM2.5-bound PAHs and their derivatives, PM2.5 were collected at an urban site in Zibo from November 5 to December 26, 2020, and the concentrations of 16 conventional PAHs, nine NPAHs, and five OPAHs in PM2.5 were analyzed using gas chromatography-mass spectrometry. Source apportionment of PAHs and their derivatives was conducted using diagnostic ratios and a PMF model, and the health risks of PAHs and their derivatives to adult men and women were evaluated using the source-dependent incremental lifetime cancer risk (ILCR) model. The results showed that the average concentrations of ∑16pPAHs, ∑9NPAHs, and ∑5OPAHs in PM2.5 of Zibo City during the sampling period were (41.61 ± 13.40), (6.38 ± 5.70), and (53.20 ± 53.47) ng·m-3, respectively. The concentrations of the three PAHs increased significantly after heating, which were 1.31, 2.04, and 5.24 times larger than those before heating. During the sampling period, Chr, BaP, and BaA were the dominant components of pPAHs; 9N-Ant and 2N-Flt + 3N-Flt were the dominant components of NPAHs; and ATQ and BZO were the dominant components of OPAHs. Source apportionment results showed that motor vehicles were the main source of PAHs and their derivatives in PM2.5 before heating, whereas after heating, the main sources were the mixed source of coal and biomass combustion and secondary formation. The total BaP equivalent (TEQ) was 14.5 ng·m-3 during the sampling period, and the TEQ increased significantly after heating, which was approximately 1.2 times of that before heating. Assisted by the individual PAH source apportionment results, the ILCR of PM2.5-boundPAHs and NPAHs in Zibo City had a certain potential carcinogenic risk for adult males (1.06 × 10-5) and females (9.32 × 10-6). Among them, the health risks of PAHs from gasoline vehicles, diesel vehicles, and coal/biomass combustion were significantly higher than those from other emission sources.


Assuntos
Poluentes Atmosféricos , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Feminino , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Calefação , Monitoramento Ambiental/métodos , Medição de Risco , Carvão Mineral/análise , China
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612589

RESUMO

Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers. In this investigation, we elucidated the mechanisms by which omega-3 fatty acids EPA and DHA will attenuate PAH-DNA adducts and lung carcinogenesis and tumorigenesis mediated by the PAHs BP and MC. Adult wild-type (WT) (A/J) mice, Cyp1a1-null, Cyp1a2-null, or Cyp1b1-null mice were exposed to PAHs benzo[a]pyrene (BP) or 3-methylcholanthrene (MC), and the effects of omega-3 fatty acid on PAH-mediated lung carcinogenesis and tumorigenesis were studied. The major findings were as follows: (i) omega-3 fatty acids significantly decreased PAH-DNA adducts in the lungs of each of the genotypes studied; (ii) decreases in PAH-DNA adduct levels by EPA/DHA was in part due to inhibition of CYP1B1; (iii) inhibition of soluble epoxide hydrolase (sEH) enhanced the EPA/DHA-mediated prevention of pulmonary carcinogenesis; and (iv) EPA/DHA attenuated PAH-mediated carcinogenesis in part by epigenetic mechanisms. Taken together, our results suggest that omega-3 fatty acids have the potential to be developed as cancer chemo-preventive agents in people.


Assuntos
Ácidos Graxos Ômega-3 , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Adulto , Camundongos , Animais , Ácidos Graxos Ômega-3/farmacologia , Adutos de DNA , Carcinogênese , Transformação Celular Neoplásica , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia
3.
Sci Total Environ ; 926: 172087, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38561129

RESUMO

The main components of particulate matter (PM) had been reported to change DNA methylation levels. However, the mixed effect of PM and its constituents on DNA methylation and the underlying mechanism in children has not been well characterized. To investigate the association between single or mixture exposures and global DNA methylation or DNA methyltransferases (DNMTs), 273 children were recruited (110 in low-exposed area and 163 in high-exposed area) in China. Serum benzo[a]pyridin-7,8-dihydroglycol-9, 10-epoxide (BPDE)-albumin adduct and urinary metals were determined as exposure markers. The global DNA methylation (% 5mC) and the mRNA expression of DNMT1, and DNMT3A were measured. The linear regression, quantile-based g-computation (QGC), and mediation analyses were performed to investigate the effects of individual and mixture exposure. We found that significantly lower levels of % 5mC (P < 0.001) and the mRNA expression of DNMT3A in high-PM exposed group (P = 0.031). After adjustment for age, gender, BMI z-score, detecting status of urinary cotinine, serum folate, and white blood cells, urinary arsenic (As) was negatively correlated with the % 5mC. One IQR increase in urinary As (19.97 µmol/mol creatinine) was associated with a 11.06 % decrease in % 5mC (P = 0.026). Serum BPDE-albumin adduct and urinary cadmium (Cd) were negatively correlated with the levels of DNMT1 and DNMT3A (P < 0.05). Mixture exposure was negatively associated with expression of DNMT3A in QGC analysis (ß: -0.19, P < 0.001). Mixture exposure was significantly associated with decreased % 5mC in the children with non-detected cotinine or normal serum folate (P < 0.05), which the most contributors were PAHs and As. The mediated effect of hypomethylation through DNMT1 or DNMT3A pathway was not observed. Our findings indicated that individual and mixture exposure PAHs and metal components had negative associations with global DNA methylation and decreased DNMT3A expression significantly in school-age individuals.


Assuntos
Metilação de DNA , Hidrocarbonetos Policíclicos Aromáticos , Criança , Humanos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido , Cotinina , Material Particulado , Poeira , DNA , Albuminas/metabolismo , Estudantes , Ácido Fólico , RNA Mensageiro/metabolismo
4.
J Colloid Interface Sci ; 665: 934-943, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569310

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are excellent alternative luminophores for electrochemiluminescence (ECL) immunoassays. However, they are inevitably limited by the aggregation-caused quenching effect. In this study, aimed at eliminating the aggregation quenching of PAHs, luminescent metal-organic frameworks (MOFs) with 1,3,6,8-tetra(4-carboxybenzene)pyrene (H4TBAPy) as the ligand were exploited as a novel nano-emitter for the construction of ECL immunoassays. The luminophore exhibits efficient aggregation-induced emission enhancement, good acid-base resistance property and unusual ECL reactivity. In addition, the simultaneous use of potassium persulfate and hydrogen peroxide as dual co-reactants resulted in a synergistic enhancement of the cathodic ECL efficiency. The use of magnetic iron-nickel alloys as the multifunctional sensing platform can further enhance the ECL activity, and its enriched zero-valent iron as a co-reactant accelerator effectively drives ECL analytical performance. Profiting from the excellent characteristics, signal-on ECL immunoassays have been constructed. With carcinoembryonic antigen as the model analysis target, a detection limit of 0.63 pg/mL was obtained within the linear range of 1 pg/mL to 50 ng/mL, accompanied by excellent analytical performance. This report opens a new window for the rational design of efficient ECL illuminators, and the proposed ECL immunoassays may find promising applications in the detection of disease markers.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Hidrocarbonetos Policíclicos Aromáticos , Pirenos , Imunoensaio , Ferro , Medições Luminescentes , Técnicas Eletroquímicas , Limite de Detecção
5.
Environ Monit Assess ; 196(5): 415, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568381

RESUMO

In this study, we used a comprehensive array of sampling techniques to examine the pollution caused by organic micropollutants in Izmit Bay for the first time. Our methodology contains spot seawater sampling, semi-permeable membrane devices (SPMDs) passive samplers for time-weighted average (TWA), and sediment sampling for long-term pollution detection in Izmit Bay, together. Additionally, the analysis results obtained with these three sampling methods were compared in this study. Over the course of two seasons in 2020 and 2021, we deployed SPMDs for 21 days in the first season and for 30 days in the second season. This innovative approach allowed us to gather sea water samples and analyze them for the presence of polycyclic aromatic hydrocarbons (Σ15 PAHs), polychlorinated biphenyls (Σ7 PCBs), and organochlorine pesticides (Σ11 OCPs). Using SPMD-based passive sampling, we measured micropollutant concentrations: PAHs ranged from 1963 to 10342 pg/L in 2020 and 1338 to 6373 pg/L in 2021; PCBs from 17.46 to 61.90 pg/L in 2020 and 8.37 to 78.10 pg/L in 2021; and OCPs from 269.2 to 8868 pg/L in 2020 and 141.7 to 1662 pg/L in 2021. Our findings revealed parallels between the concentrations of PAHs, PCBs, and OCPs in both SPMDs and sediment samples, providing insights into the distribution patterns of these pollutants in the marine ecosystem. However, it is worth noting that due to limited data acquisition, the suitability of spot sampling in comparison to instantaneous sampling remains inconclusive, highlighting the need for further investigation and data collection.


Assuntos
Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Baías , Ecossistema , Monitoramento Ambiental , Poluição Ambiental
6.
Environ Microbiol Rep ; 16(2): e13197, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600035

RESUMO

Many microbial genes involved in degrading recalcitrant environmental contaminants such as polycyclic aromatic hydrocarbons (PAHs) have been identified and characterized. However, all molecular mechanisms required for PAH utilization have not yet been elucidated. In this work, we demonstrate the proposed involvement of lasso peptides in the utilization of the PAH phenanthrene in Sphingomonas BPH. Transpositional mutagenesis of Sphingomonas BPH with the miniTn5 transposon yielded 3 phenanthrene utilization deficient mutants, #257, #1778, and #1782. In mutant #1782, Tn5 had inserted into the large subunit of the naph/bph dioxygenase gene. In mutant #1778, Tn5 had inserted into the B2 protease gene of a lasso peptide cluster. This finding is the first report on the role of lasso peptides in PAH utilization. Our studies also demonstrate that interruption of the lasso peptide cluster resulted in a significant increase in the amount of biosurfactant produced in the presence of glucose when compared to the wild-type strain. Collectively, these results suggest that the mechanisms Sphingomonas BPH utilizes to degrade phenanthrene are far more complex than previously understood and that the #1778 mutant may be a good candidate for bioremediation when glucose is applied as an amendment due to its higher biosurfactant production.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biodegradação Ambiental , Fenantrenos/metabolismo , Peptídeos/genética , Glucose
7.
Environ Geochem Health ; 46(5): 162, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592579

RESUMO

Convenient transportation facilities not only bring the higher standard of living to big cities, but also bring some environmental pollution problems. In order to understand the presence and sources of methylated polycyclic aromatic hydrocarbons (Me-PAHs) in environmental samples and their association with total organic carbon (TOC), 49 Me-PAHs were analyzed in road dust, green belt soil and parking lot dust samples in Harbin. The results showed that the ranges of the total Me-PAHs (ΣMe-PAHs) content in road dust were 221-5826 ng/g in autumn and 697-7302 ng/g in spring, and those in green belt soil were 170-2509 ng/g and 155-9215 ng/g in autumn and spring, respectively. And ΣMe-PAHs content in parking lot dust ranged from 269 to 2515 ng/g in surface parking lots and from 778 to 10,052 ng/g in underground parking lots. In these samples, the composition profile of Me-PAHs was dominated by 4-ring Me-PAHs. The results of diagnostic ratios and principal component analysis (PCA) indicated that petrogenic and pyrogenic sources were the main sources of Me-PAHs in the samples. Spearman correlation analysis showed that there was no correlation for Me-PAHs in road dust and green belt soil on the same road. Furthermore, there was a significant positive relationship (0.12 ≤ R2 ≤ 0.67, P < 0.05) between Me-PAHs concentrations and the TOC content. This study demonstrated the presence of Me-PAHs with high concentrations in the road environment samples of Harbin.


Assuntos
Poeira , Hidrocarbonetos Policíclicos Aromáticos , Cidades , Poluição Ambiental , Solo
8.
J Environ Manage ; 357: 120610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581889

RESUMO

Biochar has been widely used in soil amendment and environmental remediation. Polycyclic aromatic hydrocarbons (PAHs) could be produced in preparation of biochar, which may pose potential risks to the environment and human health. At present, most studies focus on the ecotoxicity potential of biochar, while there are few systematic reviews on the formation mechanisms and mitigation strategies of PAHs in biochar. Therefore, a systematical understanding of the distribution, formation mechanisms, risk assessment, and degradation approaches of PAHs in biochar is highly needed. In this paper, the distribution and content of the total and bioavailable PAHs in biochar are reviewed. Then the formation mechanisms, influencing factors, and potential risk assessment of PAHs in biochar are systematically explored. After that, the effective strategies to alleviate PAHs in biochar are summarized. Finally, suggestions and perspectives for future studies are proposed. This review provides a guide for reducing the formation of biochar-associated PAHs and their toxicity, which is beneficial for the development and large-scale safe use of environmentally friendly biochar.


Assuntos
Recuperação e Remediação Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Poluentes do Solo/análise , Carvão Vegetal , Solo
9.
Sci Rep ; 14(1): 8318, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594356

RESUMO

The Danube is a significant transboundary river on a global scale, with several tributaries. The effluents from industrial operations and wastewater treatment plants have an impact on the river's aquatic ecosystem. These discharges provide a significant threat to aquatic life by deteriorating the quality of water and sediment. Hence, a total of 16 Polycyclic Aromatic Hydrocarbons (PAHs) compounds were analyzed at six locations along the river, covering a period of 12 months. The objective was to explore the temporal and spatial fluctuations of these chemicals in both water and sediment. The study revealed a significant fluctuation in the concentration of PAHs in water throughout the year, with levels ranging from 224.8 ng/L during the summer to 365.8 ng/L during the winter. Similarly, the concentration of PAHs in sediment samples varied from 316.7 ng/g in dry weight during the summer to 422.9 ng/g in dry weight during the winter. According to the Europe Drinking Water Directive, the levels of PAHs exceeded the permitted limit of 100 ng/L, resulting in a 124.8% rise in summer and a 265.8% increase in winter. The results suggest that the potential human-caused sources of PAHs were mostly derived from pyrolytic and pyrogenic processes, with pyrogenic sources being more dominant. Assessment of sediment quality standards (SQGs) showed that the levels of PAHs in sediments were below the Effect Range Low (ERL), except for acenaphthylene (Acy) and fluorene (Fl) concentrations. This suggests that there could be occasional biological consequences. The cumulative Individual Lifetime Cancer Risk (ILCR) exceeds 1/104 for both adults and children in all sites.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Criança , Humanos , China , Ecossistema , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Hungria , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Rios/química , Água , Poluentes Químicos da Água/análise , Adulto
10.
Fungal Biol ; 128(2): 1675-1683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575240

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widely present in the environment, causing increasing concern because of their impact on soil health, food safety and potential health risks. Four bioremediation strategies were examined to assess the dissipation of PAHs in agricultural soil amended with sewage sludge over a period of 120 days: soil-sludge natural attenuation (SS); phytoremediation using maize (Zea mays L.) (PSS); mycoremediation (MR) separately using three white-rot fungi (Pleurotus ostreatus, Phanerochaete chrysosporium and Irpex lacteus); and plant-assisted mycoremediation (PMR) using a combination of maize and fungi. In the time frame of the experiment, mycoremediation using P. chrysosporium (MR-PH) exhibited a significantly higher (P < 0.05) degradation of total PAHs compared to the SS and PSS treatments, achieving a degradation rate of 52 %. Both the SS and PSS treatments demonstrated a lower degradation rate of total PAHs, with removal rates of 18 % and 32 %, respectively. The PMR treatments showed the highest removal rates of total PAHs at the end of the study, with degradation rates of 48-60 %. In the shoots of maize, only low- and medium-molecular-weight PAHs were found in both the PSS and PMR treatments. The calculated translocation and bioconversion factors always showed values < 1. The analysed enzymatic activities were higher in the PMR treatments compared to other treatments, which can be positively related to the higher degradation of PAHs in the soil.


Assuntos
Pleurotus , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Solo , Esgotos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Pleurotus/metabolismo , Zea mays
11.
Environ Geochem Health ; 46(5): 146, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578375

RESUMO

With the transformation and upgrading of industries, the environmental problems caused by industrial residual contaminated sites are becoming increasingly prominent. Based on actual investigation cases, this study analyzed the soil pollution status of a remaining sites of the copper and zinc rolling industry, and found that the pollutants exceeding the screening values included Cu, Ni, Zn, Pb, total petroleum hydrocarbons and 6 polycyclic aromatic hydrocarbon monomers. Based on traditional analysis methods such as the correlation coefficient and spatial distribution, combined with machine learning methods such as SOM + K-means, it is inferred that the heavy metal Zn/Pb may be mainly related to the production history of zinc rolling. Cu/Ni may be mainly originated from the production history of copper rolling. PAHs are mainly due to the incomplete combustion of fossil fuels in the melting equipment. TPH pollution is speculated to be related to oil leakage during the industrial use period and later period of vehicle parking. The results showed that traditional analysis methods can quickly identify the correlation between site pollutants, while SOM + K-means machine learning methods can further effectively extract complex hidden relationships in data and achieve in-depth mining of site monitoring data.


Assuntos
Poluentes Ambientais , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Cobre/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Chumbo/análise , Poluentes do Solo/análise , Metais Pesados/análise , Zinco/análise , Poluição Ambiental/análise , Solo , Poluentes Ambientais/análise , Mineração de Dados , Monitoramento Ambiental/métodos , China , Medição de Risco
12.
J Environ Sci (China) ; 142: 155-168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527881

RESUMO

We conducted a simultaneous field study of PM2.5-bound particulate polycyclic aromatic hydrocarbons (PAHs) and aromatic acids (AAs) in a polluted city Zhengzhou to explore the concentration, sources and potential conversion pathways between PAHs and AAs in different seasons. The average concentrations of PM2.5, 28PAHs and 8AAs during the sampling period were 77 µg/m3, 75 ng/m3, and 283 ng/m3, respectively. The concentration of both 28PAHs and 8AAs were highest in winter and lowest in summer with ratios of 6.3 and 2.3, respectively. PAHs with 5-7 rings were the main components of PAHs (52%), followed by 4 rings PAHs (30%) and 2-3 rings PAHs (18%). According to the source appointment results obtained by positive matrix factorization, the main sources of PAHs were combustion and vehicle emissions, which account for 37% and 34%, respectively. 8AAs were divided into three groups, including four benzene dicarboxylic acids (B2CAs), three benzene tricarboxylic acids (B3CAs) and one benzene tetracarboxylic acid (B4CA). And interspecies correlation analysis with PM2.5 source markers were used to investigate potential sources. Phthalic acid (o-Ph) was the most abundant specie of 8AAs (157 ng/m3, 55% of 8AAs), which was well correlated with sulfate. Meanwhile, B3CAs and B4CA were highly correlated with sulfate and weakly correlated with levoglucosan, suggesting that secondary formation was their main source. As logical oxidation products of PAHs, o-Ph and B3CAs showed good correlations with a number of PAHs, indicating possible photochemical oxidation pathway by PAHs. In addition, O3, NO2, temperature and relative humidity have positive effects on the secondary formation of B3CAs.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Benzeno , Monitoramento Ambiental/métodos , China , Emissões de Veículos/análise , Estações do Ano , Poeira/análise , Carvão Mineral/análise , Sulfatos/análise
13.
Front Public Health ; 12: 1356459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425464

RESUMO

Background: Studies on the association between mixed exposure to common pollutants such as cadmium (Cd), cobalt (Co), lead (Pb), and polycyclic aromatic hydrocarbons (PAHs) with Systemic Immune Inflammatory Index (SII), a novel hemocyte-based inflammatory marker, have not been reported. This study explored the relationship between co-exposure to Cd, Co, Pb, PAHs, and SII. Methods: In this study, we used data from the National Health and Nutrition Examination Survey and enrolled adults with complete information on Cd, Co, Pb, PAHs, and SII. The linear regression was used to analyze the association of single pollutants with SII. Furthermore, a Bayesian Kernel Machine Regression analysis and a generalized weighted quantile sum regression analysis were used to analyze the association between mixed exposure to Cd, Co, Pb, and six PAHs and SII. We also separated males and females and analyzed the different effects of pollutants on SII, respectively. Results: 5,176 participants were included in the study. After adjusting for age, gender, race, education, smoking, drinking, physical activity, and sedentary, Cd, Co, 1-OHN, 2-OHN and 2-OHF were positive with SII in the total population. Compared with the 50th percentile, the joint effect of pollutants on SII was positive. In the total population, males, and females, the top contaminant with the highest effect weights on SII were Co, Cd, and 1-OHN, respectively. The result of interaction analysis showed that the low concentrations of Cd had an elevation effect on SII in males. Conclusion: This study found a positive association of mixed exposure to Cd, Co, Pb, and six PAHs with SII, which occurred mainly in females.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Humanos , Masculino , Feminino , Cádmio , Cobalto , Inquéritos Nutricionais , Teorema de Bayes , Chumbo , Inflamação
14.
Environ Geochem Health ; 46(3): 103, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436752

RESUMO

In this study, we focused on soil contaminated by polycyclic aromatic hydrocarbons (PAHs) at typical coking-polluted sites in Beijing, conducted research on enhanced PAH bioremediation and methods to evaluate remediation effects based on toxicity testing, and examined changes in pollutant concentrations during ozone preoxidation coupled with biodegradation in test soil samples. The toxicity of mixed PAHs in soil was directly evaluated using the Ames test, and the correlation between mixed PAH mutagenicity and benzo(a)pyrene (BaP) toxicity was investigated in an effort to establish a carcinogenic risk assessment model based on biological toxicity tests to evaluate remediation effects on PAH-contaminated soil. This study provides a theoretical and methodological foundation for evaluating the effect of bioremediation on PAH-contaminated soil at industrially contaminated sites. The results revealed that the removal rate of PAHs after 5 min of O3 preoxidation and 4 weeks of soil reaction with saponin surfactants and medium was 83.22%. The soil PAH extract obtained after remediation had a positive effect on the TA98 strain at a dose of 2000 µg·dish-1, and the carcinogenic risk based on the Ames toxicity test was 8.98 times greater than that calculated by conventional carcinogenic PAH toxicity parameters. The total carcinogenic risk of the remediated soil samples was approximately one order of magnitude less than that of the original soil samples.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Pequim , Biodegradação Ambiental , Carcinogênese , Carcinógenos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Solo , Testes de Toxicidade
15.
Environ Geochem Health ; 46(3): 108, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453774

RESUMO

Accumulation of polycyclic aromatic hydrocarbons (PAH) poses significant dangers to the environment and human health. The advancement of technology for cleaning up PAH-contaminated environments is receiving more attention. Adsorption is the preferred and most favorable approach for cleaning up sediments polluted with PAH. Due to their affordability and environmental friendliness, carbonaceous adsorbents (CAs) have been regarded as promising for adsorbing PAH. However, adsorbent qualities, environmental features, and factors may all significantly impact how well CAs remove PAH. According to growing data, CAs, most of which come from laboratory tests, may be utilized to decontaminate PAH in aquatic setups. However, their full potential has not yet been established, especially concerning field applications. This review aims to concisely summarize recent developments in CA, PAH stabilization processes, and essential field application-controlling variables. This review analysis emphasizes activated carbon, biochar, Graphene, carbon nanotubes, and carbon-nanomaterials composite since these CAs are most often utilized as adsorbents for PAH in aquatic systems.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Adsorção
16.
Molecules ; 29(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474641

RESUMO

The catalytic properties of cytochrome c (Cc) have captured great interest in respect to mitochondrial physiology and apoptosis, and hold potential for novel enzymatic bioremediation systems. Nevertheless, its contribution to the metabolism of environmental toxicants remains unstudied. Human exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with impactful diseases, and animal models have unveiled concerning signs of PAHs' toxicity to mitochondria. In this work, a series of eight PAHs with ionization potentials between 7.2 and 8.1 eV were used to challenge the catalytic ability of Cc and to evaluate the effect of vesicles containing cardiolipin mimicking mitochondrial membranes activating the peroxidase activity of Cc. With moderate levels of H2O2 and at pH 7.0, Cc catalyzed the oxidation of toxic PAHs, such as benzo[a]pyrene, anthracene, and benzo[a]anthracene, and the cardiolipin-containing membranes clearly increased the PAH conversions. Our results also demonstrate for the first time that Cc and Cc-cardiolipin complexes efficiently transformed the PAH metabolites 2-hydroxynaphthalene and 1-hydroxypyrene. In comparison to horseradish peroxidase, Cc was shown to reach more potent oxidizing states and react with PAHs with ionization potentials up to 7.70 eV, including pyrene and acenaphthene. Spectral assays indicated that anthracene binds to Cc, and docking simulations proposed possible binding sites positioning anthracene for oxidation. The results give support to the participation of Cc in the metabolism of PAHs, especially in mitochondria, and encourage further investigation of the molecular interaction between PAHs and Cc.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Hidrocarbonetos Policíclicos Aromáticos/química , Citocromos c , Cardiolipinas , Peróxido de Hidrogênio , Antracenos
17.
Sci Total Environ ; 926: 171873, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521275

RESUMO

Research on High Spatial-Resolved Source-Specific Exposure and Risk (HSRSSER) was conducted based on multiple-year, multiple-site synchronous measurement of PM2.5-bound (particulate matter with aerodynamic diameter<2.5 µm) toxic components in a Chinese megacity. The developed HSRSSER model combined the Positive Matrix Factorization (PMF) and Land Use Regression (LUR) to predict high spatial-resolved source contributions, and estimated the source-specific exposure and risk by personal activity time- and population-weighting. A total of 287 PM2.5 samples were collected at ten sites in 2018-2020, and toxic species including heavy metals (HMs), polycyclic aromatic hydrocarbons (PAHs) and organophosphate esters (OPEs) were analyzed. The percentage non-cancer risk were in the order of traffic emission (48 %) > industrial emission (22 %) > coal combustion (12 %) > waste incineration (11 %) > resuspend dust (7 %) > OPE-related products (0 %) ≈ secondary particles (0 %). Similar orders were observed in cancer risk. For traffic emission, due to its higher source contributions and large population in central area, non-cancer and cancer risk fraction increased from 23 % to 48 % and 20 % to 46 % after exposure estimation; while for industrial emission, higher source contributions but small population in suburb area decreased the percentage non-cancer and cancer risk from 38 % to 22 % and 39 % to 24 %, respectively.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Monitoramento Ambiental , Material Particulado/análise , Cidades , Hidrocarbonetos Policíclicos Aromáticos/análise , China/epidemiologia
18.
Chemosphere ; 354: 141641, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460850

RESUMO

The knowledge of polycyclic aromatic hydrocarbons (PAHs) in wetlands remains limited. There is a research need for the dynamics between interfaces of multimedia when ice is present in this fragile ecosystem. In this study, sediment, open-water, sub-ice water, and ice samples were collected from the Songhua wetland to study the behaviors of PAHs with and without influences from ice. The concentration of all individual PAHs in sub-ice water (370-1100 ng/L) were higher than the open-water collected from non-ice-covered seasons (50-250 ng/L). Enrichment of PAHs in the ice of wetland was found, particularly for high-molecular-weight PAHs (HMW). This could be attributed to the relatively lower polarity of hydrocarbons compounds, making them more likely to remain in the ice layer during freezing. Source assessments reveal common sources for sub-ice water and ice, which differ from those in the open water in non-ice-covered seasons. This difference is primarily attributed to heating activities in the Harbin during winter. The average percentage contributions were 79% for sub-ice water and 36% for ice related to vehicle exhausts and coal combustion. Additionally, wood burning contributed 25% to sub-ice water and 62% to ice. Sediment in the wetland was found to serve as a final deposit particularly for heavier PAHs, especially those with 6 rings. Sediment also has the potential to act as a source for the secondary emission of low-molecular-weight PAHs (LMW) congeners into the water. PAHs in wetland displayed low ecological risk, while HMW PAHs with relative higher ecological risk is recommended to be further monitored.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano , Áreas Alagadas , Ecossistema , Multimídia , Monitoramento Ambiental , Água , China , Poluentes Químicos da Água/análise , Sedimentos Geológicos
19.
Chemosphere ; 355: 141796, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537711

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are pervasive ecological pollutants produced essentially during the inadequate burning of organic materials. PAHs are a group of different organic compounds that are made out of various aromatic rings. PAHs pose a serious risk to humans and aquatic ecosystems because of their mutagenic and carcinogenic properties. In this way, there is a critical prerequisite to utilizing successful remediation strategies and methods to limit the dangerous effect of these pollutants on the ecosystem. Biochar has believed of intriguing properties such as simple manufacturing operations and more affordable and more productive materials. Biochar is a sustainable carbonaceous material that has an enormous surface area with bountiful functional groups and pore structure, which has huge potential for the remediation of toxic pollutants. This review emphasizes the occurrence, development, and fate of toxic PAHs in the environment. In the present review, the properties and role of biochar in the removal of PAHs were illustrated, and the influencing factors and an efficient key mechanism of biochar for the remediation of PAHs were discussed in detail. Various surface modification methods can be utilized to improve the biochar properties with the magnetization process; the advancements of modified biochar are pointed out in this review. Finally, the constraints and prospects for the large-scale application of biochar in the remediation of toxic pollutants are highlighted.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Ecossistema , Carvão Vegetal/química , Poluentes do Solo/química , Solo/química
20.
Chemosphere ; 355: 141779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537709

RESUMO

To ensure good air quality during the China International Import Expo (CIIE) event, stringent emission-reduction measures were implemented in Shanghai. To assess the efficacy of these measures, this study measured typical categories of intermediate/semi volatile organic compounds (I/SVOCs), including alkanes (C10-C26 n-alkanes and pristane), EPA-priority polycyclic aromatic hydrocarbons (PAHs), alkylnaphthalenes, benzothiazole (BTH) and chlorobenzenes (CBs), at an urban site of Shanghai before and during two CIIE events (2019 and 2020; non-CIIE versus CIIE). The average concentrations of alkanes and PAHs during both 2019 and 2020 CIIE events decreased by approximately 41% and 17%, respectively, compared to non-CIIE periods. However, the decline in BTH and CBs was only observed during CIIE-2019. Secondary organic aerosol (SOA) formation from alkanes, PAHs and BTH was evaluated under atmospheric conditions, revealing considerable SOA contributions from dimethylnaphthalenes and BTH. Positive matrix factorization (PMF) analysis further revealed that life-related sources, such as cooking and residential emissions, make a noticeable contribution (21.6%) in addition to the commonly concerned gasoline-vehicle sources (31.5%), diesel-related emissions (20.8%), industrial emissions (18.6%) and ship emissions (7.5%). These findings provide valuable insights into the efficacy of the implemented measures in reducing atmospheric I/SVOCs levels. Moreover, our results highlight the significance of exploring additional individual species of I/SVOCs and life-related sources for further research and policy development.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental/métodos , Alcanos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Aerossóis/análise , Emissões de Veículos/análise , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...